Summary

An important task that petroleum engineers and geoscientists undertake is to produce decision-relevant information. Some of the most important decisions we make concern what type and what quality of information to produce. When decisions are fraught with geologic and market uncertainties, this information gathering may have such forms as seismic surveys, core and well test analyses, reservoir simulations, market analyses, and price forecasts— which the industry spends billions of US dollars each year. Yet, considerably less time and resources are expended on assessing the profitability or value of this information. Why is that?

This paper addresses how to make value-of-information (VOI) analysis more accessible and useful by discussing its past, present, and future. On the basis of a survey of SPE publications, we provide an overview of the use of VOI in the oil and gas industry, focusing on how the analysis was carried out and for which types of decisions VOI analysis has been performed. We highlight areas in which VOI methods have been used successfully and identify important challenges.

We then identify and discuss the possible causes for the limited use of VOI methods and suggest ways to increase the use of this powerful analysis tool.

Introduction

One of the most useful features of decision analysis is its ability to distinguish between constructive and wasteful information gathering. VOI analysis evaluates the benefits of collecting additional information before making a decision. Such information gathering may be worthwhile if it holds the possibility of changing the decision that would be made without further information. VOI attributes no value to “uncertainty reduction” or “increased confidence” per se. Rather, value is added by enabling the decision maker (DM) to better “tune” his/her choice to the underlying uncertainty. Thus, information value is forever an entanglement of uncertainty and decision making; one cannot value information outside of a particular decision context.


ENHANCE YOUR OILFIELD ROI.

Let us show you why operators across the U.S. trust us to deliver outstanding results.

LEARN MORE

C&J ENERGY SERVICES
Other Resources

Looking for more?
Some of the OnePetro partner societies have developed subject-specific wikis that may help.

PetroWiki® was initially created from the seven volume Petroleum Engineering Handbook (PEH) published by the Society of Petroleum Engineers (SPE).
Oil and gas is a major industry supporting the global economy as oil and gas still remain the primary sources of energy for industrialized and developing economies of the world. Rising energy demand and depletion of energy resources are adding the pressure on governments to develop regulatory plans for oil and gas physical security system. Oil and gas price fluctuation resulting in economic slowdown can become a hurdle in the growth of this market. For More Information, Download PDF Brochure. Companies in the oil and gas industry are improving operational performance by adopting data management and big data solutions to classify and streamline the data and to monitor daily workflows, thus fuelling the data business market growth. Financial reporting in the oil and gas industry. International Financial Reporting Standards. Foreword. The issues are addressed following the oil & gas value chain: exploration and development, production and sales of product, together with issues that are pervasive to a typical oil and gas entity. For published nancial statement disclosure examples, see Appendix A. Upstream activities. Resources are those volumes of oil and gas that are estimated to be present in the ground, which may or may not be economically recoverable. Reserves are those resources that are anticipated to be commercially recovered from known accumulations from a specic date. Natural resources are outside the scope of IAS 16 "Property, Plant and Equipment" and IAS 38 "Intangible Assets". PAST PRESENT FUTURE 3 Emerson Confidential. 4 Three Control Levels of Production Optimization PLANNING LIFE OF FIELD STORAGE History matching Well planning ANALYSIS Flow assurance Condition Monitoring Well optimization Abnormal Situation Prevention VALIDATION CONTROL MEASUREMENT Closed loop APC/MPC Loop tuning PROCESS ACTUATION DECISION SUPPORT STRATEGY 5 Automation Control Loop of the Past Gathering information Interpretation Emerson Confidential. 6 Final Control of the Past Emerson Confidential. 12 Today's Paradigm: Headwinds for the Oil and Gas Industry Retiring Workforce Rapid Depletion Rates More Complex Projects Fewer Specialists More Technology Large CAPEX Project Costs 12 Emerson Confidential.