A microbiological examination of muscle tissue of beef, pork, and lamb carcasses

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

- You have cookies disabled in your browser. You need to reset your browser to accept cookies or to ask you if you want to accept cookies.
- Your browser asks you whether you want to accept cookies and you declined. To accept cookies from this site, use the Back button and accept the cookie.
- Your browser does not support cookies. Try a different browser if you suspect this.
- The date on your computer is in the past. If your computer's clock shows a date before 1 Jan 1970, the browser will automatically forget the cookie. To fix this, set the correct time and date on your computer.
- You have installed an application that monitors or blocks cookies from being set. You must disable the application while logging in or check with your system administrator.

Why Does this Site Require Cookies?

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

What Gets Stored in a Cookie?

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

A microbiological examination of muscle tissue of beef, pork, and lamb carcasses. September 1969. R. Nickelson. [...] C. Vanderzant. A microbiological examination was made of muscle tissue of beef, pork, and lamb carcasses. Coryneforms also predominated in the lamb and beef samples. Warm muscle samples yielded a greater number of bacterial isolates than chilled samples. No psychrophilic bacteria were recovered from the samples. Moraxella, Alcaligenes, Acinetobacter anitratum (Herellea), and yeasts and molds. Staphylococci were predominant among the isolates obtained from the three species. A large percentage of the staphylococci were coagulase-positive. Coryneforms also predominated in the lamb and beef samples. The microbiology of meat began to attract attention almost immediately following the founding of bacteriology as a science in its own right. With the passing years there has been an ebb and flow of interest which can be related to contemporary practices in commerce. Thus there was much activity in meat microbiology in the 1930s when for the first time large amounts of meat were being shipped long distance - from Australia to the UK, for example. As a consequence, proportions of many of low-molecular-mass substances change during conversion of muscle into meat (Table 1.1). When oxygen is depleted, anaerobic routes are used and lactic acid becomes the endproduct of glycolysis, and its accumulation in turn causes the pH to fall. However, it is only by examination of these points that it is possible to develop a better understanding of the real extent and significance of bacterial contamination of deep tissues. Aerobic, Extrinsic Floras. Most meat is stored for some period in air at chill tempera-tures, so there is a large literature on the floras that develop under these conditions. Table 4. Maximum Initial Numbers of Bacteria Completely Eliminated from Carcass Tissues. A microbiological examination of muscle tissue of beef, pork and lamb. J. Milk Food Technol. 32~357-361.